Telegram Group & Telegram Channel
🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6420
Create:
Last Update:

🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6420

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from ms


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA